11.03.2014 23:14:48

Alexander Chepick	Алексанлр Чепик
Analysis of E. Lerner's article:	Перевод и анализ статьи Э. Лернера:
Tolman test from z=0.1 to z=5.5:	Тест Толмена от z=0.1 ло z=5.5:
Preliminary results challenge the	Предварительные результаты оспаривают
expanding Universe model	модель расширяющейся Вселенной
http://arxiv.org/abs/0906.4284v1	http://arxiv.org/abs/0906.4284v1
Eric J. Lerner	Эрик Дж. Лернер
Lawrenceville Plasma Physics, Inc., USA	Физика плазмы Лоуренсвиля, Inc., США
elerner@igc.org	elerner@igc.org
Abstract	Аннотация
We performed the Tolman surface-	Мы выполнили тест Толмена поверхностной
brightness test for the expansion of the	яркости (SB) на расширение Вселенной,
universe using a large UV dataset of disk	используя большой набор УФ данных дисковых
galaxies in a wide range of redshifts (from	галактик в широком интервале красных
0.03 to 5.7). We combined data for low-z	смещений (от 0.03 до 5.7). Мы комбинировали
galaxies from GALEX observations with	данные для близких галактик от наблюдений
those for high-z objects from HST	GALEX с данными для далеких объектов от
UltraDeep Field images. Starting from the	UDF HST. Начав с данных в публично
data in publicly-available GALEX and	доступных каталогах GALEX И UDF, мы
UDF catalogs, we created 6 samples of	создали 6 выборок галактик в покоящейся
galaxies with observations in a rest-frame	системе отсчета с наблюдениями в диапазоне,
band centered at 141 nm and 5 with data	центрированном на 141 нм, и 5 с данными от
from one centered on 225 nm. These	одной, центрированной на 225 нм. Эти
bands correspond, respectively, to the	диапазоны относятся, соответственно, к FUV и
FUV and NUV bands of GALEX for	NUV диапазонам GALEX для объектов при $z =$
objects at $z = 0.1$. By maintaining the	0.1. Сохраняя тот же самый диапазон волн
same rest-frame wave-band of all	неподвижной системы отсчета для всех
observations we greatly minimized the	наблюдений, мы значительно минимизировали
effects of k-correction and filter	эффекты К-коррекции и преобразования
transformation. Since SB depends on the	фильтрования. Поскольку SB зависит от
absolute magnitude, all galaxy samples	аосолютнои зв.величины, все выоорки галактик
were then matched for the absolute magnitude range $(17.7 \le M(AD) \le 10.0)$	тогда соответствовали интервалу аосолютнои 2D = D = D = M(A D) < 10.0 и лис
Inaginitude Tange $(-17.7 < M(AB) < -19.0)$	ЗВ.ВЕЛИЧИНЫ (-1/./ <М(АВ) <-19.0) И ДЛЯ
and for mean absolute magnitude. We	средней ассолютной зв.величины. Мы
the magnitude and half-light radius (HLR)	выполнили однородные измерения зв.величины и радиуса полутими (HI R) для ресу галактик в
for all the galaxies in the 11 samples	и радиуса полутымы (ПЕК) для всех галактик в
obtaining the median UV surface	11 высорках, получая медианную $5 \oplus$
brightness for each sample	поверхноетную яркоеть для каждон высорки.
We compared the data with two models: 1)	Мы сравнили данные с двумя моделями: 1)
The LCDM expanding universe model	молель расширяющейся вселенной LCDM с
with the widely-accepted evolution of	широко признанной эволюшией размера
galaxy size $\frac{R=R_0}{H(z)}$ and 2) a simple.	галактик R=R ₀ H ₀ /H(z) и 2) простая Евклидова
Euclidean, non-expanding (ENE) model	нерасширяющаяся (ЕNE) модель с уравнением
with the distance given by $d=cz/H_0$. We	расстояния d=cz/H ₀ . Мы нашли, что модель
found that the ENE model was a	ENE значительно лучше соответствовала
significantly better fit to the data than the	данным, чем модель LCDM с эволюцией
LCDM model with galaxy size evolution.	размера галактики. В то время как модель
While the LCDM model provides a good	LCDM хорошо соответствует только данным
fit to the HUDF data alone, there is a 1.2	HUDF, есть разность 1.2 mag в SB,

magnitude difference in the SB predicted from the model for the GALEX data and observations, a difference at least 5 times larger than any statistical error. The ENE provides a good fit to all the data except the two points with z>4, and there are inconsistencies in the GALEX measurements when using this model. Given the importance of any test of the expansion of the universe, we intend to check these preliminary results with additional data.	предсказанной в этой модели для данных GALEX и наблюдений, причем эта разность, по крайней мере, в 5 раз большая, чем любая статистическая ошибка. ENE хорошо соответствует всем данным, кроме двух точек с z> 4, и есть несоответствия в измерениях GALEX при использовании этой модели. Учитывая значимость любого теста расширения Вселенной, мы намереваемся проверить эти предварительные результаты с дополнительными данными.
ACh_1. In formula $R = R_0/H(z)$ on the right and at the left there are different dimensionalities. Possibly, formula $R=R_0H_0/H(z)$ was meant?	<u>АЧ_1</u> . В формуле $R = R_0/H(z)$ справа и слева стоят разные размерности. Возможно, имелась в виду формула $R = R_0 H_0/H(z)$? В статье для статической модели используется
Author uses the distance equation $d=(c/H_0)z$ for all z: 0.1 <z <5.5="" for="" static<br="">model. But correctly the distance equation in static model is $d=(c/H_0)\ln(1+z)$. Author considered that pairs of compared objects in Tolman test are obliged to have strictly equal characteristics, at least radiuses and absolute luminosity. But at z=5 the second equation gives a distance in 5/ln(6)=2.8 times smaller than is considered in this article. Accordingly, radiuses will be gained others, in 2.8 times smaller, other absolute luminosities and surface- brightness, that is, samples of galaxies comparing at z> 0.3 should differ essentially from built samples in this article. Taking into account the distance formula, and also lack of the calculation of scattering and light uptake in intergalactic medium the critical counterargument is gained in favour of LCDM supporters about correctness of the deductions made in the article.</z>	Уравнение расстояния d=(c/H ₀)z, для всех z: 0.1 <z<5.5. а="" правильное="" расстояния<br="" уравнение="">в статической модели имеет вид d=(c/H₀)ln(1+z), Автор учитывал, что пары сравниваемых объектов в тесте Толмена обязаны иметь строго равные характеристики, как минимум, радиусы и абс.светимости. Но второе Уравнение расстояния дает при z=5 расстояние в 5/ln(6)=2.8 раза меньшее, чем рассматривается в статье. Соответственно, получатся другие, в 2.8 раза меньшие, радиусы, другие абсолютные светимости и другие поверхностные яркости, то есть, сравниваемые выборки галактик при z>0.3 должны существенно отличаться от выборок, построенных в статье. С учетом формулы расстояния, а также отсутствия учета рассеяния и поглощения света в межгалактической среде получаем острый контраргумент в пользу сторонников LCDM о правильности выводов, сделанных в статье.</z<5.5.>
keywords{Galaxies: general, Cosmology: general Tolman test}	ключевые слова {Галактики: общий, Космология: общий тест Толмена}
1. Introduction	1. Введение
As Tolman demonstrated (1930), any	Как показал Толмен (1930), любая модель
decrease in surface brightness (SR) of	расширяющенся оселенной предсказывает уменьшение поверуностной яркости (SR)
identical objects by $(z+1)^4$ where z is	илентичных объектов в (z+1) ⁴ раз гле z -
redshift and where SB is measured in	красное смещение и гле SB измерена в
bolometric units (VEGA-	болометрических единицах (VEGA-magnitudes/
magnitudes/arcsec ² or erg/(sec cm^2	arcsec^2 или erg/(sec cm ² arcsec ²)). Один
$\operatorname{arcsec}^{2}$)). One factor of (z+1) is due to the	множитель (z+1) появляется из-за

time-dilation factor (decrease in photons per unit time), one factor is from the decrease in energy carried by each photon, while two additional factors of $(z+1)$ are due to the object being closer to us by a factor of $(z+1)$ at the time the light was emitted and thus having a larger angular size. (If AB magnitudes or flux/Hz units are used, the dimming is by a factor of $(z+1)^3$, while for ST magnitude or flux per nm units, the dimming is by a factor of $(z+1)^5$. The dimming is the same for all expanding universe geometries, independent of the specific parameters of the cosmological model.	коэффициента растяжения времени (уменьшение числа фотонов за единицу времени), один множитель - из-за уменьшения энергии, которую несет каждый фотон, в то время как два дополнительных множителя (z+1) - из-за того, что объект был ближе к нам в (z+1) раз в момент излучения света, и, таким образом, имел больший угловой размер. (Если использовать единицы АВ-магнитуд или Поток/Гц, то потускнение будет с коэффициентом (z+1) ³ , в то время как для единиц ST-mag или потока на 1 нм, коэффициент потускнения будет (z+1) ⁵ . Потускнение является одинаковым для всех конфигураций расширяющейся Вселенной, независимо от специфических параметров космологической модели.
ACh_2. Photons of light at the moment of reception can have about a source only such information which matches to the moment of emission of these photons, and they cannot have the information that has happened to a source during their travelling, including information about changing of size of a source. Therefore at all has no value, in how an angular size of a source varied after the moment of emanation of the received photons - it is not represented in properties of the received photons in any way. In LCDM the fourth degree for a factor (1+z) is explained differently. See §1.7, Steven Weinberg, Cosmology, Oxford University Press,2008,ISBN: <u>0198526822</u> ,Pages: 544 http://ebookee.org/Steven-Weinberg- Cosmology-Repost- 316827.html	АЦ_2. Фотоны света в момент приема могут иметь только ту информацию об источнике, которая соответствует моменту испускания этих фотонов, и не могут отражать информацию, что произошло с источником за время их распространения, в том числе это касается углового размера источника. Поэтому совершенно не имеет значения, во сколько раз изменился угловой размер источника после момента излучения принятых фотонов - на свойствах принятых фотонов это никак не отражается. В LCDM четвертая степень для множителя (1+z) объясняется иначе. См. §1.7, Steven Weinberg, Cosmology, Oxford University Press,2008,ISBN: <u>0198526822</u> ,Pages: 544 http://ebookee.org/Steven-Weinberg-Cosmology- Repost- 316827.html (рус Вайнберг Стивен, Космология: М.: УРСС: Книжный дом «ЛИБРОКОМ», 2013. — 608 с. Пер. с англ. Под ред. и с предисл. И.Я. Арефьевой, В.И. Санюка. http://rutracker.org/forum/viewtopic.php?t=4392536.)
By contrast, in a Euclidean, non- expanding (ENE) universe, where the redshift is not due to expansion, but to some other physical process, the SB decreases as $(1+z)$ in VEGA-magnitudes and is independent of distance in AB magnitudes per arcsec ² . In this paper, we use AB magnitudes throughout, so the ENE prediction is that SB is constant. The	В отличие от этого, в Евклидовой нерасширяющейся (ENE) Вселенной, где красное смещение появляется не из-за расширения, но из-за какого-то другого физического процесса, SB уменьшается как (1+z) в VEGA-магнитудах и независимо от расстояния в AB-магнитудах на arcsec ² . В этой статье мы используем AB-магнитуды повсюду, таким образом, предсказание ENE - SB

difference between the two models, $(z+1)^3$ in all units, is independent of the specific cosmological parameters used and is a very large factor at the maximum redshifts now observable-a factor of 216, for example, at a redshift of 5.	постоянна. Различие между этими двумя моделями, (z+1) ³ во всех единицах, не зависит от используемых специфических космологических параметров и является очень большим коэффициентом в наблюдаемых теперь максимальных красных смещениях, например, множитель 216 при красном смещении 5.
ACh_3. For all variables applied in the	<u>АЧ_3</u> . Для всех переменных, применяемых в
Tolman test, it is necessary to give a	тесте Толмена, необходимо привести подробное
detailed explanation why they have the	объяснение, почему они имеют указанные
specified formulas in AB-magnitudes as	формулы в системе АВ-магнитуд, так как
properties of this force system are little-	свойства этой системы единиц известны мало. В
known. In this case, it is easier to view all	связи с этим, проще рассматривать все
values in usual unities (erg, sec, cm, arsec)	величины в обычных единицах (erg, sec, cm,
in which the Tolman test is initially	arsec), в которых тест Толмена изначально
formulated. As for reaching of constancy	сформулирован. Тем более, что для достижения
of SB in Static model it is enough to view	постоянства SB в Статической модели
function $(1+z)*B()$ instead of the surface	достаточно рассматривать функцию (1+z)*B()
brightness, B().	вместо функции поверхностной яркости В().
So, it should be possible to use the Tolman	Поэтому должно быть можно использовать тест
test to distinguish the dark-energy, cold	Толмена, чтобы отличить модель расширения, с
dark matter (LCDM) expanding and ENE	темной энергией и холодной темной материей
models. There have been a number of	(LCDM), от модели ENE. В прошлом было
efforts to do this in the past. But, as Scarpa	много усилий сделать это. Но, как подробно
et al (2009) describes in detail, these	описывает Scarpa и др. (2009), эти предыдущие
previous attempts have been seriously	попытки были серьезно ограничены по разным
limited in various ways. Some papers were	причинам. Несколько статей было чрезвычайно
highly limited in redshift range: Pahre et al	ограничено в интервале красного смещения:
(1996) to z<0.4, Lubin and Sandage	Pahre и др. (1996) к z <0.4, Любин и Сэндидж
(2001) to <0.9. Weedman et al (1998) and	(2001) к <0.9. Weedman и др. (1998) и Hathi и др.
Hathi et al (2008) both restricted their	(2008) оба ограничивали их изучения
studies to maximum surface brightness for	максимальной поверхностной яркостью для их
their samples rather than average surface	выборок, а не средней поверхностной яркостью,
brightnesses, which prevented a self-	которая предотвращала самосогласованное
consistent test of the ENE model. Despite	испытание модели ENE. Несмотря на
the limitations of these earlier studies,	ограниченность этих более ранних изучений,
when their data is re-examined in a	когда их данные вновь были исследованы
consistent manner, Scarpa et al show that	совместимым способом, Scarpa и др.
in each case the data are entirely consistent	показывают это в каждом случае, эти данные
with the ENE model.	полностью совместимы с моделью ENE.
For a decisive test, better data sets are	Для решающего испытания необходимы
needed. Fortunately such data sets have	лучшие наборы данных. К счастью такие
become available since 2005 with the	наборы данных стали доступными с 2005 года с
distribution of Hubble Ultra Deep Field	распространением изображений и каталогов
(HUDF) images and catalogs and the	Ультра глубокого поля Хаббла (HUDF) и
GALEX Medium Imaging Survey (MIS)	каталога Среднего Обзора изображений (MIS)
catalog. Together these data sets make	GALEX. Вместе эти наборы данных делают
possible a consistent comparison of	возможным совместимое сравнение
surface brightness in the Far UV (FUV)	поверхностной яркости в Дальнем УФ (FUV) и
and Near UV (NUV) bands across a range	Близком УФ (NUV) диапазонах по всему
of z from close to 0 to almost 6. Based on	интервалу z от близкого к 0 до почти 6.

a preliminary examination of this data, Lerner (2006) demonstrated that again, there was general consistency with the non-expanding expectations. Motivated by this interesting suggestion we have undertaken a detailed analysis of the GALEX and HUDF datasets with new measurements of the all relevant parameters.	Основываясь на предварительной экспертизе этих данных, Lerner (2006) продемонстрировал снова, что была общая совместимость с нерасширяющимися ожиданиями. Мотивированные этим интересным предположением, мы предприняли подробный анализ наборов данных GALEX и HUDF с новыми измерениями всех параметров. относящихся к делу.
The present paper seeks to overcome the limitations of previous work and to provide a comprehensive test of the surface brightness predictions of the two models. To do this, we select galaxies from the HUDF catalog of Coe et al (2006) and perform our own measurements of radius magnitude and	Данная работа стремится преодолеть ограничения предыдущей работы и обеспечить всестороннее испытание предсказаний о поверхностной яркости в этих двух моделях. Чтобы сделать это, мы выбрали галактики из каталога HUDF Coe и др. (2006) и выполнили наши собственные измерения радиуса, 28 величины и поверхностной яркости из
surface brightness of radius, magnitude and surface brightness in the HUDF B-band (435 nm), V-band (606nm), i-band (775 nm) and z-band (905 nm) images. We compare galaxy samples based on these images with GALEX galaxies at low redshift. In this way we are able to carry out a consistent comparison of galaxies at the same rest-frame or at-the-galaxy wavelengths, thus minimizing the k- corrections needed when rest-frame wavelengths are different. We also are able to compare galaxies of the same absolute luminosity across a broad range	зв.величины и поверхностной яркости из изображений В-диапазона HUDF (435 нм), V- диапазона (606 нм), i-диапазона (775 нм) и z- диапазона (905 нм). Мы сравниваем выборки галактик, основанные на этих изображениях, с галактиками GALEX в малом красном смещении. Таким образом, мы обеспечиваем возможность выполнить совместимое сравнение галактик в той же самой неподвижной системе отсчета или длинах волн «У галактики», таким образом, минимизировав К-коррекцию, необходимой, когда длины волн покоящихся систем отсчета являются различными. Мы
absolute luminosity across a broad range of z , with almost continuous coverage in the range from 0.9 to 5.7.	также можем сравнить галактики с одинаковои абсолютной светимостью по всему широкому интервалу z, с почти непрерывным покрытием в интервале от 0.9 до 5.7.
In Sect. 2 we report on the selection of the	В Секции.2 мы сообщаем о выборе объектов и
objects and describe the construction of	описываем построение наборов данных при
the datasets at various redshifts. In Sect. 3	различных красных смещениях. В Секции 3 мы
comparison with the expectations with	представляем наши измерения и сравнения с
standard LCDM and ENE models Finally	ЕNE. Наконец в Секнии 4 мы лелаем выволы и
in Sect. 4 we draw conclusions and	предлагаем новые тесты.
propose new tests.	-
2. The sample selection and datasets	2. Выбор выборки и наборы данных
In order to compare SB of galaxies over a	Чтобы сравнить SB галактик по большому
significant redshift range (up to $z = 5.5$)	интервалу красного смещения (до $z = 5.5$) и
and to avoid strong k-corrections we need	изоежать значительных К-коррекций, мы
to use observation taken in different bands (depending on the redshift) such that the	должны использовать наолюдение, взятое в
same rest frame region of all the galaxies	различных дианазонах (в зависимости от красного смещения) таким образом, чтобы
is compared. At present this requirement is	сравнивалась область олной и той же
well met only in the UV, combining UV	неподвижной системы отсчета всех галактик. В
data collected by the GALEX for low z	настоящее время этому требованию хорошо
objects with optical observations from	отвечают только в УФ диапазоне,

HST for high z sources.	объединяющие УФ данные, собранные GALEX
	для олизких объектов, с оптическими
	наолюдениями от HSI для далеких источников.
GALEX data are used to assess a low z	Данные GALEX используются, чтобы оценить
sample of galaxies based on the	выоорку олизких галактик, основанную на
bondo: ELIV (155 nm) and NUV (220 nm)	наолюдениях, сооранных в двух диапазонах $C \wedge L = X \cdot E L W (155 mc) + N L W (220 mc) M x$
bands: FUV (155 nm) and NUV (230 nm).	GALEX: FUV (155 HM) II NUV (230 HM). IMB
we set the average redshift for our low 2	устанавливаем среднее красное смещение для
sample to 2–0.1 as the best compromise in	нашей выоорки с малыми 2 для 2–0.1 как
older to have a significant number of	лучший компромисс, чтобы иметь значительное
objects and to use galaxies that are well	количество объектов и использовать галактики,
resolved by GALEA. These data	которые хорошо разрешены ОАLEA. Эти
correspond to rest frame observations	данные соответствуют наолюдениям в
NUX filters, respectively.	141 им и 200 им лид EUV и NUV финктрор
NUV inters, respectively.	141 нм и 209 нм для FUV и NUV фильтров,
	соответственно.
A number of high z galaxy samples are	Многие выоорки далеких галактик затем оыли
then selected from the Hubble Ultra Deep	выораны из ультра 1 луоокого Поля Хаоола,
Field using the ACS observations obtained in $h(425 \text{ gms}) = M(60 \text{ gms}) = (775 \text{ gms}) = a^{-1}$	используя ACS наолюдения, полученные в (275 стус) $V(00 \text{ стус})$ (775 стус) $v = 1$
III 0 (455 IIII), v (000IIII), I (775 IIII) and z (005 nm) hands. The redshift of the high	(005 m) $V_{maximum a substantial maximum a substantial m$
2 (905 nm) bands. The redshift of the high	(905 нм). Красное смещение выоорок с
z samples is set such as to minimize the k-	оольшими z установлено так, чтооы
corrections and thus for each fifter it is	минимизировать, к-коррекции, и, таким
rest frame wavelengths of the two low z	ооразом, для каждого фильтра это
CALEX complex Using the 4 ACS filter	центрировано так олизко, насколько возможно в
GALEA samples. Using the 4 ACS inter	длинах волн одной и той же неподвижной
given above this approach allow us to define 8 high z complex of galaxies 4 that	
metab the EUV hand and 4 for the NUV	малыми Z. Используя данные выше 4 АСS
$\frac{1}{100}$	фильтра, этот подход позволяет нам определить 8 рыборок долоких голоктик, на которых 4
	α выоброк далских галактик, из которых 4
Another important issue for this study is	
that since SB is correlated with the	другая важная проолема для этого изучения -,
absolute magnitude M we must compare	поскольку SD коррелирована с аосолютной
adsolute inagintude in we must compare	зв.величиной W, то мы должны сравнивать
All the considered samples were thus	палактики, у которых в среднем такое жети. Бес
matched in order to have the same mean	рассматриваемые выоорки должны овтв
absolute magnitude. We selected an	олинакорую среднюю абсолютную ав релицину
absolute magnitude. We selected all	Одинаковую среднюю ассолютную звлеличину. Мы рыбрали интеррал абсолютной зв релиции.
in order to include the most luminous	1713 выорали интервал ассолютной зв.величины $0.7 - 177$ по -19 чтобы включить большинство
galaxies that are visible at all redshifts to	
have adequate sample size and to avoid	красных смешениях, чтобы иметь алекватный
too large a range in luminosity As	объем выборки и избежать слишком большого
described below we used the same	интервала в светимости Как описано ниже мы
absolute magnitude range in the tests of	использовали тот же самый интервал
each cosmological model, using that	абсолютной зв.величины в испытаниях кажлой
model's formula for absolute magnitude	космологической молели. используя формулы
Since the two models' formulae actually	этих молелей лля абсолютной зв величины
agreed quite closely, almost the same	Поскольку формулы этих лвух молелей.
samples are used for both tests.	фактически согласованные весьма близко.
r	почти те же самые выборки, используются лля
	обоих испытаний.

ACh 4. In each sample, also as well as in	АЧ 4. В кажлой выборке, также как и в кажлой
each compared pair of galaxies the interval	сравниваемой паре галактик интервал
of magnitudes should be almost zero, at	абсолютных зв величин должен быть
least - be essentially less of odds of	практически нулевым по крайней мере
models $25 \log[(1+z_2)/(1+z_1)]^3$ to discover	существенно меньше разницы молелей
this odds	$25 \log[(1+z_2)/(1+z_1)]^3$ чтобы обнаружить эту
Here the essential role is played by exact	
formulae of models in particular the	разницу. Злесь существенную роль играют точные
formula $d=(c/H)\ln(1+z)$ is obliged to using	формулы молелей в изстности в статинеских
in static models	
It is necessary to understand that the	$d=(c/H)\ln(1+z)$
Tolman test is formulated in terms of	и-(с/прист-2). Необходимо ущитивать ито тест Толмена
distances in parsecs: and on photometric	сформулирован в терминах расстояний в
and on an angular size, and in visible	сформулирован в терминах расстоянии в
surface brightness the energy transiting	паресках. фотомстрического и по угловому
surface originaless - the energy transiting	размеру, и в видимой поверхностной яркости -
the receiver. For such unities the ratio of	энергии, проходящей за единицу времени через
the surface bricktness of two equal courses	единицу поверхности приемника. именно для
the surface originates of two equal sources will be $[(1+z)]^4$. Stating and	таких единиц отношение поверхностнои
will be $[(1+z_2)/(1+z_1)]$. Stating and sheating the Tolmon's test in terms of	яркости двух равных источников дает $[(1+z)/(1+z)]^4$ формациина и проворяя тоот
checking the Tolman's test in terms of	[(1+z ₂)/(1+z ₁)]. Формулируя и проверяя тест
module of distances, i.e., in magnitudes,	Толмена в терминах модулей расстояний, т.е., в
we necessarily must come to an odds of	звездных единицах, неооходимо приити к
the surface brightness of $10 \text{ L} = 5/(1 \text{ L} = 3)$ Due there and an	разнице поверхностных яркостей $10 \text{ L}_{} = 1/(1 + \pi)^2$ Ц
$10 \text{ Log}[(1+Z_2)/(1+Z_1)]$ But thus and an	$10 \text{ Log}[(1+z_2)/(1+z_1)].$ Но при этом и разница
odds of abs. luminosities of two compared	аос. светимости двух сравниваемых галактик в
galaxies in magnitudes, and an odds in	зв. величинах, и разница в радиусах этих
radiuses of these galaxies should be,	галактик должны быть, соответственно, очень
accordingly, very small.	малыми.
In this way we are able to carry out a	Таким образом нам можно выполнить
consistent comparison of low z galaxies	совместимое сравнение близких галактик по
across a broad range of z, with almost	широкому интервалу z, c почти непрерывным
continuous coverage in the range from $z=$	покрытием в интервале от $z = 0.9$ до $z=5.7$. В
0.9 to $z=5.7$. In the following sections we	следующих разделах мы даем полные описания
give the full descriptions of the selection	выбора объектов в рассмотренных выборках и
of objects in the considered samples and	подробности примененных коррекций.
the details of the corrections applied.	
The low z GALEX dataset	Набор данных GALEX на малых z
The low-z sample of disk galaxies was	Выборка близких дисковых галактик была
selected from the GALEX Medium	выбрана из каталога GALEX Среднего Обзора
Imaging Survey (MIS) catalog.	изображений (MIS). (http://galex.stsci.edu/GR2/)
(http://galex.stsci.edu/GR2/)This includes	Он включает примерно 27000 (26722) галактик,
about 27000 (26722) galaxies that are also	которые также спектроскопически
spectroscopically classified in the SDSS	
catalog. In order to eliminate the	классифицированы в каталоге SDSS. Чтобы
	классифицированы в каталоге SDSS. Чтобы отбросить неразрешенные галактики, мы
unresolved galaxies we conservatively	классифицированы в каталоге SDSS. Чтобы отбросить неразрешенные галактики, мы консервативно выбирали для измерения только
selected for measurement only those with	классифицированы в каталоге SDSS. Чтобы отбросить неразрешенные галактики, мы консервативно выбирали для измерения только галактики со степенью звездообразования <0.4,
selected for measurement only those with stellarity < 0.4, although we also counted	классифицированы в каталоге SDSS. Чтобы отбросить неразрешенные галактики, мы консервативно выбирали для измерения только галактики со степенью звездообразования <0.4, при этом мы также считали число
selected for measurement only those with stellarity < 0.4 , although we also counted the number of unresolved galaxies. A	классифицированы в каталоге SDSS. Чтобы отбросить неразрешенные галактики, мы консервативно выбирали для измерения только галактики со степенью звездообразования <0.4, при этом мы также считали число неразрешенных галактик. Дальнейший
selected for measurement only those with stellarity < 0.4 , although we also counted the number of unresolved galaxies. A further selection criterion is that all the	классифицированы в каталоге SDSS. Чтобы отбросить неразрешенные галактики, мы консервативно выбирали для измерения только галактики со степенью звездообразования <0.4, при этом мы также считали число неразрешенных галактик. Дальнейший критерий выбора - все включаемые галактики
selected for measurement only those with stellarity < 0.4, although we also counted the number of unresolved galaxies. A further selection criterion is that all the galaxies included be disk galaxies. This is	классифицированы в каталоге SDSS. Чтобы отбросить неразрешенные галактики, мы консервативно выбирали для измерения только галактики со степенью звездообразования <0.4, при этом мы также считали число неразрешенных галактик. Дальнейший критерий выбора - все включаемые галактики должны быть дисковыми Это - важное
selected for measurement only those with stellarity < 0.4 , although we also counted the number of unresolved galaxies. A further selection criterion is that all the galaxies included be disk galaxies. This is an important consideration to avoid	классифицированы в каталоге SDSS. Чтобы отбросить неразрешенные галактики, мы консервативно выбирали для измерения только галактики со степенью звездообразования <0.4, при этом мы также считали число неразрешенных галактик. Дальнейший критерий выбора - все включаемые галактики должны быть дисковыми Это - важное рассмотрение, чтобы избежать беспорядка в

If a disk galaxy's exponential disk is too	Если экспоненциальный диск дисковой
dim to be observed in a given image, but	галактики слишком тускл, чтобы наблюдаться в
its bright bulge, with higher surface	данном изображении, но его яркий балдж, с
brightness, is observed, the result can be	более высокой поверхностной яркостью,
confused with a much smaller elliptical	наблюдается, результат может быть перепутан с
galaxy. As will be shown below, the	намного меньшей эллиптической галактикой.
galaxies that we are focusing on, which	Как будет показано ниже, галактики, на
are very luminous in the UV, are all disk	которых мы сосредотачиваемся, которые очень
galaxies in the GALEX sample.	яркие в УФ, все являются дисковыми
-	галактиками в выборке GALEX.
We initially chose a narrow redshift range	Мы первоначально выбрали узкий интервал
from 0.095 to 0.1 for the GALEX sample.	красного смещения от 0.095 до 0.1 для выборки
However, in order to test the effects of	GALEX. Однако, чтобы проверить эффекты
resolution on the measurements, we also	разрешения на измерениях, мы также выбирали
selected a lower z sample in the FUV	выборку с меньшими z в FUV,
extending from $z=0.02$ to 0.05. The final	простирающуюся от z=0.02 до 0.05. Конечные
z=0.1 samples of GALEX disk galaxies	выборки GALEX дисковых галактик для z=0.1
consist of 40 objects in the FUV sample	состояли из 40 объектов в выборке FUV и 70
and 70 objects in the NUV sample. The	объектов в выборке NUV. FUV выборка для
z=0.04 FUV sample is 29 objects.	z=0.04 имеет 29 объектов.
The high z HUDF dataset	Набор данных HUDF для больших z
The high-z samples are selected from the	Выборки с большими z выбраны из
HUDF photometric and morphological	фотометрических и морфологических каталогов
catalogs (Coe et al.). These catalogs	HUDF (Кое и др.). Эти каталоги содержат
contain photometric measurements for	фотометрические измерения для каждой
each galaxy in the b, v, i, z, H and J bands,	галактики в диапазонах b, v, i, z, H и J, и
and morphological measurements in the i-	морфологические измерения в і-диапазоне. У
band. Each galaxy has a photometric	каждой галактики есть фотометрическое
redshift, estimated by two methods:	красное смещение, оцененное двумя методами:
Bayesian Probability (BPZ) and Maximum	Байесова Вероятность (ВРZ) и Наибольшее
Likelihood (BML). Coe et al. report that	правдоподобие (BML). Кое и др. сообщают, что
comparison of BPZ with spectroscopic	сравнение BPZ со спектральными красными
redshifts in the small sample where they	смещениями в небольшой выборке, где они
are available indicates that, except for a	доступны, указывает, что, за исключением
few outliers, BPZ redshifts are accurate to	нескольких выбросов, красные смещения ВРZ
0.04. To eliminate outliers, we have	точные до 0.04. Чтобы исключить эти выбросы,
chosen to use the difference between the	мы были вынуждены использовать разность
BML and BPZ redshifts as an indicator of	между красными смещениями BML и BPZ как
the reliability of BPZ redshifts, and have	индикатор надежности красных смещений BPZ,
eliminated all those with ABS(z(BPZ)-	и исключили все с z(BPZ)-z(BML) >0.5. Также в
z(BML)) > 0.5. Also in this case we have	этом случае мы исключили все галактики со
eliminated all galaxies with stellarity >	степенью звездообразования > 0.4, с числом
0.4, those with Sersic number > 2.5 and	Серсика > 2.5 и с неопределенностью в числе
with uncertainties in the Sersic number > 1	Серсика > 1 (все параметры, определены по
(all parameters determined from i-band	изображениям і-диапазона).
images).	- /
The redshift ranges of the HUDF samples	Интервалы красного смещения выборок HUDF
are chosen to match as much as possible	выбраны, чтобы соответствовать в максимально
the same rest frame region observed for	возможной степени той же самой области
the low z GALEX samples. The upper and	неподвижной системы отсчета, наблюдаемой
lower limits of each redshift range are set	для GALEX выборки с малыми z. Верхние и
so that the central wavelength of the	нижние пределы каждого интервала красного

GALEX filter coincides with the upper and lower cutoffs of the HST filter. However in some cases the upper cutoff was smaller to avoid allowing the Lyman- alpha region to enter into the observed rest frame spectral range.	смещения установлены так, чтобы центральная длина волны фильтра GALEX оказалась между верхними и нижними порогами фильтра HST. Однако в некоторых случаях верхний порог был меньше, чтобы избежать попадания Лайман- альфа области в наблюдаемые пределы спектра неподвижной системы отсчета.
The SB versus Absolute Magnitude relation	SB против отношения абсолютных зв.величин
In order to compare surface brightness, we must ensure that we are comparing similar objects. Since SB is correlated with the absolute magnitude M we must compare galaxies that have on average the same M.	Чтобы сравнивать поверхностную яркость, мы должны гарантировать, что мы сравниваем подобные объекты. Поскольку SB коррелирована с абсолютной зв.величиной М, мы должны сравнивать галактики, у которых есть в среднем та же самая М
For a non-expanding model, M can be calculated from the apparent magnitude m and the distance d, where d is in Mpc, M = m - 35 - 5 log d. However, a relationship must be assumed between the observed redshift z and d. For this study, we assume that the relationship d= cz/H ₀ holds for all z. For a non-expanding model, M can be derived from the apparent magnitude m (in the AB system) using the relation: M - m = $5 -5Log(cz/H_0)$.	Для нерасширяющейся модели M может быть вычислена по видимой зв.величине m. и расстоянию d (в Mpc), M = m - 35 - 5 log d. Однако, должна быть принята зависимость между наблюдаемым красным смещением z и d. Для этого изучения мы предполагаем, что зависимость d= cz/H ₀ держится для всех z. Для нерасширяющейся модели M можно вывести из видимой величины m. (в системе AB), используя соотношение: M - m = 5 -5Log(cz/H ₀).
This assumption is motivated by two considerations. First, the linear Hubble relationship is observed to hold in the lowest redshift region, where there are the best independent tests of distance, so the simplest hypothesis is to extrapolate this relation for all z. Second, the luminosity vs. redshift formula derived from this simple assumption is extremely close to the luminosity relationship based on the LCDM formula, not deviating from it by more than 0.5 magnitudes up to a z of 5.7.	Это предположение мотивировано двумя рассмотрениями. Во-первых, линейная зависимость Хаббла наблюдается выполняющейся в самой низкой области красного смещения, где есть лучшие независимые проверки расстояния, таким образом самая простая гипотеза должна экстраполировать это соотношение для всего z. Во-вторых, светимость в зависимости от формулы красного смещения, выведенной из этого простого предположения, чрезвычайно близка к зависимости светимости, основанной на формуле LCDM, не отклоняющейся от этого больше чем на 0.5 величинами до z 5.7.
ACh_5. The relation $d=(c/H_0)\ln(1+z)$ extrapolates on all z the Hubble's linear law for small z. Therefore for all z it is fulfilled: M - m = 5 -5Log((c/H ₀)ln(1+z)).	<u>АЧ_5</u> . Соотношение $d=(c/H_0)ln(1+z)$ экстраполирует на все z линейный закон Хаббла для малых z. Поэтому для всех z выполняется M - m = 5 -5Log((c/H ₀)ln(1+z)).

	44 42 42 40 38 36 36 34 34	
	-2.5 -2 -1.5 -1 -0.5 0 Logz	0.5
Figure 1 . Comparison of the distance modulus as a function of the redshift for ENE model (solid line) (M - m = 5-5Log(cz/H ₀) in AB magnitudes) and the one obtained from the concordance cosmology with Ω_M =0.26 and Ω_{Λ} =0.76 (dashed line). Superposed to the models is the Hubble diagram for supernovae type Ia from the gold sample (Riess04), and the supernovae legacy survey (Astier06). The fits assume the absolute magnitude of supernovae is M= -19.25. The two lines are nearly identical over the whole redshift range.	Рис.1. Сравнение модуля расстояния как функт красного смещения для модели ENE (сплошна: пиния) (М м. = 5-5Log (сz/H0) в величинах А модели, полученной из космологии соответств Ω_{M} =0.26 и Ω_{Λ} =0.74 (пунктирная линия). На мо, наложена диаграмма Хаббла для Сверхновых I гипа из золотой выборки (Riess04), и обзор существующих Сверхновых (Astier06). Подгон предполагает, что абсолютная зв.величина Сверхновых М= -19.25. Эти две линии почти идентичны по всему интервалу красного смещ	ции я В) и ия с дели а ка ения.
ACh_6. Here the K-corrections and an uptake with scattering of light are not considered, but which change a magnitude of observable objects, and, hence, a declination of a selected line. A values M-m do not depend from m both for galaxies, and for Supernovas Ia type, but for Supernova the distance module is considered in AB-magnitudes by formula M-m= $5 - 5Log((c/H_0)ln(1+z)) -$ 2.5Log(1+z), where last term is added because of elongation of a full time of light curve approximately by (1+z).	<u>АЧ_6</u> . Здесь не учтены К-коррекции и поглощение с рассеянием света, которые изменяют зв.величину наблюдаемых объек и, следовательно, наклон подбираемой лин Величины М-т не зависят от т и для гала и для Сверхновых Іа типа, но для Сверхнов модуль расстояния считается в АВ системе формуле M-m = 5 -5Log((c/H ₀)ln(1+z)) - 2.5Log(1+z) последний член добавлен из-за растяжения световой кривой примерно в (1+z) раз.	тов, ии. ктик, зых опо , где
It is remarkable that this relation gives very similar values (see Figure 1) to those computed using the concordance cosmology. The agreement is better than 0.3 mag over the whole range of redshift up to $z = 5$ and for most of the range, including nearly the entire range covered by supernova observations, it is better than 0.1 mag.	Замечательно, что это соотношение дает оч похожие значения (см. Рис.1) к тем, которы вычислены с использованием космологии соответствия. Соглашение лучше, чем 0.3 и по всему интервалу красного смещения до и для большей части интервала, включая п весь интервал, покрытый наблюдениями Сверхновой, это лучше чем 0.1 mag.	1ень 1е nag z=5 очти
It is important that for both Universe models that we want to compare the relationship between the apparent and absolute magnitude turned out to be almost the same. This allow us to perform the selection of the galaxies based on a	Важно, что у обеих моделей Вселенной, которые мы хотим сравнить, зависимость между видимой и абсолютной зв.величин оказалась почти той же самой. Это позволя нам выполнять выбор галактик, основанны данном интервале абсолютных зв.величин.	іет ій на

given range of absolute magnitudes that is almost independent on the cosmological model assumed. We find that there is almost a complete overlap between the samples chosen using the ENE and LCDM magnitudes, except for the two highest-z samples, and even there most of the samples are the same.	которые почти независимы от рассматриваемой космологической модели. Мы обнаруживаем, что есть почти полное перекрытие между выборками, выбранными, используя величины ENE и LCDM, за исключением двух выборок с самыми большими z, и даже там большинство выборок - одинаковые.
3. Data analysis and results	3. Анализ данных и результаты
brightness of galaxies, we must use a measurement technique that is consistent for all samples and that is independent of the size of the galaxy images. We could not use the catalog values for GALEX and HUDF, since, first of all, the radii values were derived by different fitting approaches, and second, there were not HUDF catalog values for wavebands other than i-band.	чтобы точно сравнить поверхностную яркость галактик, мы должны использовать технику измерений, которая совместима для всех выборок, и это независимо от размера изображений галактик. Мы не могли использовать каталожные значения для GALEX и HUDF, поскольку, прежде всего, значения радиусов были выведены различными подходами подгонки, и во-вторых, не было значений каталога HUDF для интервалов волн кроме i-диапазона.
To determine the magnitudes of the	чтооы определить зв. величины галактик, мы
galaxies, we took the total flux within a	взяли суммарный поток в пределах круглой
circular aperture.	апертуры.
I he size of the aperture had to be large	Размер апертуры должен оыл оыть достаточно
enough to accurately measure the light	оольшим, чтооы точно измерить свет от
from the largest galaxies, but small enough	найоольших галактик, но достаточно
so as to avoid the containination from	неоольшим, чтооы изоежать зашумления от
are excluded if there is a neighbor within	других источников, олизких к цели. Галактики исключались если есть сосел в пределах 10
10 pixels of the aperture	пикселей апертуры
To measure the galaxy radii consistently.	Чтобы измерить радиусы галактики
we have to avoid several sources of error	последовательно, мы должны избежать
that would bias the result depending on	нескольких источников погрешности, которые
image size. In galaxies with small image	сместили бы результат в зависимости от
size, the point-spread function (PSF) blurs	размера изображения. В галактиках с
the central region, making the galaxy	небольшим размером изображения функция
appear larger than it is. For galaxies with	рассеяния точки (PSF) растягивает центральную
large images, by contrast, the limit of the	область, и галактика кажется большей, чем есть.
aperture cuts off part of their light, so the	Для галактик с большими изображениями, в
half-light radius can appear smaller than in	отличие от этого, предел апертуры отрезает
reality.	часть их света, таким образом, радиус полутьмы
	может выглядеть меньшим, чем в
	действительности.
Since we have limited our sample to	Поскольку мы ограничили нашу выборку
exponential disk galaxies, a way to avoid	экспоненциальными дисковыми галактиками,
surface brightness profile as a measure of	спосоо изоежать этих ошиоок - это
radius. The inner 3 nivels are evoluded	использовать падение профиля поверхностной авкости как меру раличеа. Внутранные 3
from the fit to avoid the effects of the PSF	лрадоти как меру радиуса. Внутренние з пикселя исключены из полгонки, чтобы
However a simple straight- line fit from	избежать эффектов PSF Олнако простая
the innermost to the outmost part of a	прямая. провеленная от самой внутренней ло
galaxy exaggerates the importance of the	самой внешней части галактики,

outermost points, which may include small companions and have low signal-to-noise. To avoid this problem, we have taken the median slope as the measure of the galaxy half-light radius.	преувеличивает значимость наиболее удаленных точек, которые могут включать небольших компаньонов и иметь низкий сигнал-шум. Чтобы избежать этой проблемы, мы взяли медианный склон как меру радиуса полутьмы галактики.
Apertures	Апертуры
For each sub-sample we measured	Для каждой подвыборки мы измерили
magnitudes, radii and then computed the	зв.величины, радиусы и затем вычислили
average surface brightness for a range of	среднюю поверхностную яркость для интервала
apertures in order to estimate what is the	апертур, чтобы оценить, что из выбранной
effect on our measurements of the aperture	апертуры влияет на наши измерения. Мы
chosen. We estimated this behavior from	оценивали это поведение по тенденции средних
the trend of the mean values of magnitude,	величин магнитуды, радиусов и SB как функции
radii and SB as a function of the aperture.	апертуры. Поскольку апертура превышает
As the aperture exceeds the radii of the	радиусы наибольших галактик,
largest galaxies the above values converge.	вышеупомянутые значения сходятся. Мы
We selected the final apertures for each	выбирали окончательные апертуры для каждой
sample when the mean SB changed by less	выборки, когда средняя SB изменилась меньше
than 0.1 magnitudes and the mean radius	чем 0.1 mag и средний радиус - меньше чем на 5
by less than 5% in going from one	% в продвижении от одной апертуры до
aperture to the next largest, selecting the	следующей наибольшей, выбирая меньшие
smaller apertures for the final values.	апертуры для окончательных значении.
we define SB by this formula: SB=m + 2.51 $a_{2}(2 - r^{2})$ where n is the LU D in one	мы определяем SB такой формулой: SB=m + $251a_2(2 - a^2)$, вис т. ЦЦ В в соминали ими
2.5log(2π f), where f is the HLK in arc-	2.5 $\log(2\pi r)$, The r - HLR B секундах дуги
This is not the same as the average SD	usmepeh merodom cknoha. The he to we cance
within the III D, but it produces a SD	как средняя SB в пределах пLK, но это
which can be consistently compared at all	производит SB, которая может оыть
redshifts independently of image size	последовательно сравнена во всех красных
redshifts, independentity of image size.	изображения
ACh 7 In section §1 7 of Weinberg's	АЧ 7 В разделе §1 7 «Космологии» Вайнберга
«Cosmology » the common standard is	лано НАСТОЯЩЕЕ определение SB:
made for definition of SB	« общепринятая трактовка соотношения
	красного смешения и светимости лает не
$\ll B = l/\Omega = (l/A)/(\Omega/A) = f d_a^2/(4\pi)$	зависящий от модели результат (1.4.12):
$d_{\rm p}^2$). (1.7.1)	$d_{\rm th}(z)/d_{\rm v}(z) = (1+z)^2$, так что проверка этого
In traditional cosmology of a Big	соотношения может подтвердить наши
Bang the ratio d_p/d_a is given by the	представления о $d_{\phi}(z)$.
formula (1.4.12), so	Проверить это соотношение для $d_{\phi}(z)/d_{v}(z)$
$B = (1+z)^{-4} (\pounds/4\pi).$ (1.7.2)».	мы можем с помощью «теста поверхностной
	яркости», довольно давно предложенного
[Steven Weinberg, Cosmology, Oxford	Толменом ¹³⁸⁾ . Если f - абсолютная светимость
University	источника света в расчете на единицу площади,
Press,2008,ISBN: 0198526822 ,Pages:	то видимая светимость фрагмента поверхности
544	площадью A составит $l = \pounds A/(4\pi d_{\phi}^2)$. Этот
	фрагмент поверхности стягивает телесный угол
http://ebookee.org/Steven-Weinberg-	$\Omega = A/d_{\rm y}^{2}.$
Cosmology-Repost316827.html]	
	Поверхностная яркость В определяется
	как видимая светимость в расчете на телесный
	угол, так что

	$B = l/\Omega = (l/A)/(\Omega/A) = \pounds d_y^2/(4\pi d_{\phi}^2). (1.7.1)$ В традиционной космологии Большого взрыва отношение d_{ϕ}/d_y дается формулой (1.4.12), так что $B = (1+z)^{-4}(\pounds/4\pi). (1.7.2)$ ». [- Вайнберг Стивен, Космология: М.: УРСС: Книжный дом «ЛИБРОКОМ», 2013. — 608 с. Пер. с англ. Под ред. и с предисл. И.Я. Арефьевой, В.И. Санюка. http://rutracker.org/forum/viewtopic.php?t=4392536]
Measuring the mean SB of the population	Измерение средней SB совокупности
Since there is considerably scatter in the SB of individual galaxies, we are using the <i>population</i> mean at each redshift as the measure of surface brightness. To estimate the population mean from the sample, we can't just use the sample mean. The samples are «"censored"" in that unresolved galaxies, whose number is known, are excluded from the measured SBs, because their radii are too small to be accurately resolved. There are two ways to measure the population mean from a censored sample. One is to assume that the minimum radius observable is known, and use that number to determine the population mean and variance from the sample mean and variance. There are a number of standard statistical methods to do that (for example, Cohen).	Поскольку есть значительно разброс в SB индивидуальных галактик, мы используем <i>среднее заселение</i> в каждом красном смещении как меру поверхностной яркости. Чтобы оценить математическое ожидание выборки, мы не можем просто использовать выборочное среднее. Выборки «чувствительны» к тому, что неразрешаемые галактики, число которых известно, исключены из измерения SB, потому что их радиусы являются слишком небольшими, чтобы иметь точное разрешение. Есть два способа измерить математическое ожидание чувствительной выборки. Нужно предположить, что минимальный наблюдаемый радиус известен, и использовать это число для определения среднее заселение и дисперсии от выборочного среднего и дисперсии. Есть много стандартных статистических методов, чтобы сделать это (например, метод Коэна).
However, this calculation does depend on	Однако, это вычисление действительно зависит
assumes that all the unresolved galaxies are smaller than this radius. A simpler method is to simply take the median SB of all the galaxies, including the unresolved galaxies that would otherwise be in the sample. This method merely assumes that the unresolved galaxies have SB higher than the median SB. By using the median, the method is also less sensitive to measurement errors in the smallest and largest galaxies. Like the censored analysis method, it does assume that the distribution is approximately Gaussian, so that the median is a good estimate of the mean. This is the method that we chose and in the entire following, median SB is used in this sense.	радиуса и предполагает, что все неразрешенные галактики меньше чем этот радиус. Более простой метод должен просто взять медианную SB всех галактик, включая неразрешенные галактики, которые иначе были бы в выборке. Этот метод просто предполагает, что у неразрешенных галактик есть SB выше, чем медианная SB. При использовании медианы метод также менее чувствителен к измерительным погрешностям в наименьших и наибольших галактиках. Как чувствительный метод анализа, это действительно предполагает, что распределение является приблизительно гауссовым, так, чтобы медиана была хорошей оценкой среднего значения. Это - метод, который мы выбрали, и далее медиана SB используется в этом смысле.
The statistical error in this estimate is	Статистическая ошиока в этои оценке просто

simply $(\sigma/N)^{0.5}$, where N is the total of the	$(\sigma/N)^{0.5}$, где N – суммарное число разрешенных
resolved and unresolved galaxies in the	и неразрешенных галактик в выборке, и о -
sample and σ is the standard deviation of	стандартное отклонение совокупности.
the population. The standard deviation of	Стандартное отклонение совокупности может
the population can be estimated from that	оыть оценено по стандартному отклонению
of the sample by the censored data	выборки методами чувствительных данных. Для
methods. For this paper, we simply take as	этой статьи мы просто берем как оценку
an estimate of the population σ that for the	совокупности σ ее же для выборки с
sample with the largest variance. This	наибольшей дисперсией. Это почти наверняка
almost certainly overestimates variance,	слишком высоко оценивает дисперсию, но дает
but gives the most generous analysis of the	самый общий анализ подгонки моделей.
models' fit.	
Comparison of observations with the	Сравнение наблюдений с моделью LCDM
The comparison of the data with the	Сравнание ванных с модально I CDM исполенано
I CDM model is complicated by the fact	фактом, ито в моления расшириошейся
that in expanding universe models of	фактом, что в моделях расширяющейся
galaxy formation it is expected that the	ожилается, ито радился галактики,
radii of galaxies with the same absolute	ожидается, что радиусы галактик с той же
luminosity will grow with time of	самой ассолютной яркостью будут расти со
formation Mo Mao and White (1998)	
first showed that the radius of disk	первые показывали, что радиуе дисковых
galaxies forming at redshift z should be a	7 лолжен быть фиксированной настью размера
fixed fraction of the size of the dark matter	гало темной материи. Это в свою очерель
halo. This in turn is proportional to $1/H(z)$	пропорционально 1/H(z) лля фиксированной
for fixed viral velocity or	вириальной скорости или H ^{-2/3} (7) лля
$H^{-2/3}(z)$ for fixed mass and somewhere in	фиксированной массы и гле-то посредине - для
hetween for fixed absolute luminosity I	фиксированной массы, и где-то посредине - для
where	фиксированной ассолотной светимости Е, где
$H(z) = H_0[O_m(1+z)^3 + O_k(1+z)^2 + O_A]^{1/2}$	$H(z) = H_0[O_m(1+z)^3 + O_k(1+z)^2 + O_A]^{1/2} $ (1)
$\frac{1}{1}$	$\mathbf{x}(\mathbf{z}) = \mathbf{x}(\mathbf{z} - \mathbf{z}) = \mathbf{x}(\mathbf{z} - \mathbf{z}) = \mathbf{x}(\mathbf{z} - \mathbf{z})$
where Ω_m is the ratio of matter density to	где $\Omega_{\rm m}$ - отношение плотности вещества к
closure density, Ω_{Λ} is the ratio of dark	плотности замыкания, Ω_{Λ} - отношение
energy density to closure density and Ω_k is	плотности темной энергии к плотности
the curvature parameter, assumed to be	замыкания и Ω_k - параметр кривизны, который,
zero for an inflationary universe. Thus the	как предполагают, был нолем для
expectation for observed surface	инфляционной Вселенной. Таким образом,
brightness becomes	ожидание наблюдаемой поверхностной яркости
	становится
SB= SB ₀ - 2.5 $\log((\Omega_m(1+z)^3 + \Omega_k(1+z)^2))$	$SB = SB_0 - 2.5 \log((\Omega_m (1 + z)^3 + \Omega_k (1 + z)^2 + \Omega_\Lambda)) / (1$
$+\Omega_{\Lambda})/(1+z)^{3}),$ (2)	$(+z)^{3}$, (2)
for the case of fixed virial velocity. It	для случая фиксированной вириальной
should be noted that in the case of ($\Omega_m = 1$,	скорости. Нужно отметить, что в случае ($\Omega_{\rm m}$
$\Omega_k = \Omega_\Lambda = 0$, eq. (2) predicts constant SB	=1, $\Omega_k = \Omega_\Lambda = 0$) уравнение (2) предсказывает
and is indistinguishable from the non-	постоянную SB и неразличимо от
expanding prediction.	нерасширяющегося предсказания.
However, this choice of cosmological	Однако, этот выбор космологических
parameters can be excluded on many other	параметров может быть исключен на многих
grounds, such as predicting an age of the	других основаниях, таких как предсказание
universe of 9 Gy. In contrast, in the case of	возраста Вселенной 9 Gy. Напротив, в случае
the concordance LCDM cosmology	соответствия LCDM космология Ω_m =0.3, Ω_k =0,
$\Omega_{\rm m}$ =0.3, $\Omega_{\rm k}$ =0, Ω_{Λ} =0.7, the predictions	Ω_{Λ} =0.7, предсказания отличаются очень

differ very significantly from those of the	значительно от таковых из нерасширяющейся				
non-expanding model. If low-z SB values	модели. Если значения SB близких объектов,				
are assumed to be equal for the expanding	как предполагается, равны для моделей				
and non-expanding models, the difference	расширения и нерасширения, то разность между				
between their predictions for SB at high z	предсказаниями для SB для далеких объектов				
is 1.3 magnitudes. However, it should be	равна - 1.3 тад. Однако, нужно заметить, что,				
noted that the if the ENE and LCDM	если предсказания ENE и LCDM расположить				
predictions are plotted together (see Figure	вместе (см. Рисунок 2), то кривые становятся				
2) the curves become nearly parallel at	почти параллельными для больших z. Это				
high z. This means that only a study that	означает, что только изучение, которое				
compares SB at high and low z can	сравнивает SB с большими и малыми z, может				
differentiate between the models.	найти различие между этими моделями.				
Ach_8. A formula of the distance module	<u>АЧ_8</u> . В статье не приведена формула модуля				
in AB magnitudes for LCDM model is not	а расстояния в величинах АВ для модели LCDM				
given in the article. Its values are only	при $\Omega_{\rm M}$ =0.26, $\Omega_{\rm k}$ =0 и Ω_{Λ} =0.76, которая отражена				
been plotted in a Fig.1 at $\Omega_M=0.26$, $\Omega_k=0$	на Рис.1.				
and $\Omega_{\Lambda}=0.76$.					
	1.4				
	a 1.2				
	2 0.8				
	8 0.6 -				
	ų 0.4				
	0.2				
	0.2				
	0.2 /				
	⁰⁷ 0.2 0 0 1 2 3 4 5 6 z				
Figure 2. The predicted observed SB for the	•• 0.2 0 1 2 3 4 5 6 2 Рис.2. Предсказанная наблюдаемая SB для модели				
Figure 2 . The predicted observed SB for the LCDM model with galaxy size evolution	 в.2 в.2				
Figure 2 . The predicted observed SB for the LCDM model with galaxy size evolution plotted against redshift. For the ENE model	Рис.2. Предсказанная наблюдаемая SB для модели LCDM с эволюцией размера галактик нарисована в зависимости от красного смещения. Для модели				
Figure 2 . The predicted observed SB for the LCDM model with galaxy size evolution plotted against redshift. For the ENE model the prediction is a horizontal line, as SB is	Рис.2. Предсказанная наблюдаемая SB для модели LCDM с эволюцией размера галактик нарисована в зависимости от красного смещения. Для модели ENE будет горизонтальная линия, поскольку SB				
Figure 2 . The predicted observed SB for the LCDM model with galaxy size evolution plotted against redshift. For the ENE model the prediction is a horizontal line, as SB is predicted to be constant. Note that at z>1.5,	Рис.2. Предсказанная наблюдаемая SB для модели LCDM с эволюцией размера галактик нарисована в зависимости от красного смещения. Для модели ENE будет горизонтальная линия, поскольку SB предсказана постоянной. Заметьте, что при z>1.5,				
Figure 2 . The predicted observed SB for the LCDM model with galaxy size evolution plotted against redshift. For the ENE model the prediction is a horizontal line, as SB is predicted to be constant. Note that at z>1.5, LCDM also predicts a nearly constant	Рис.2. Предсказанная наблюдаемая SB для модели LCDM с эволюцией размера галактик нарисована в зависимости от красного смещения. Для модели ENE будет горизонтальная линия, поскольку SB предсказана постоянной. Заметьте, что при z>1.5, LCDM также предсказывает, почти константу				
Figure 2 . The predicted observed SB for the LCDM model with galaxy size evolution plotted against redshift. For the ENE model the prediction is a horizontal line, as SB is predicted to be constant. Note that at z>1.5, LCDM also predicts a nearly constant observed SB, so a comparison of galaxies at high and law z is assential to differentiate the	Рис.2. Предсказанная наблюдаемая SB для модели LCDM с эволюцией размера галактик нарисована в зависимости от красного смещения. Для модели ENE будет горизонтальная линия, поскольку SB предсказана постоянной. Заметьте, что при z>1.5, LCDM также предсказывает, почти константу наблюдаемой SB, таким образом сравнение галактик				
Figure 2 . The predicted observed SB for the LCDM model with galaxy size evolution plotted against redshift. For the ENE model the prediction is a horizontal line, as SB is predicted to be constant. Note that at z>1.5, LCDM also predicts a nearly constant observed SB, so a comparison of galaxies at high and low z is essential to differentiate the two models	Рис.2. Предсказанная наблюдаемая SB для модели LCDM с эволюцией размера галактик нарисована в зависимости от красного смещения. Для модели ENE будет горизонтальная линия, поскольку SB предсказана постоянной. Заметьте, что при z>1.5, LCDM также предсказывает, почти константу наблюдаемой SB, таким образом сравнение галактик близких и далеких является существенным, чтобы лифференцировать эти две модели				
Figure 2 . The predicted observed SB for the LCDM model with galaxy size evolution plotted against redshift. For the ENE model the prediction is a horizontal line, as SB is predicted to be constant. Note that at z>1.5, LCDM also predicts a nearly constant observed SB, so a comparison of galaxies at high and low z is essential to differentiate the two models.	Рис.2. Предсказанная наблюдаемая SB для модели LCDM с эволюцией размера галактик нарисована в зависимости от красного смещения. Для модели ENE будет горизонтальная линия, поскольку SB предсказана постоянной. Заметьте, что при z>1.5, LCDM также предсказывает, почти константу наблюдаемой SB, таким образом сравнение галактик близких и далеких является существенным, чтобы дифференцировать эти две модели.				
Figure 2 . The predicted observed SB for the LCDM model with galaxy size evolution plotted against redshift. For the ENE model the prediction is a horizontal line, as SB is predicted to be constant. Note that at $z>1.5$, LCDM also predicts a nearly constant observed SB, so a comparison of galaxies at high and low z is essential to differentiate the two models. We show the results for all samples in Table 1. We show here the number of	Рис.2. Предсказанная наблюдаемая SB для модели LCDM с эволюцией размера галактик нарисована в зависимости от красного смещения. Для модели ENE будет горизонтальная линия, поскольку SB предсказана постоянной. Заметьте, что при z>1.5, LCDM также предсказывает, почти константу наблюдаемой SB, таким образом сравнение галактик близких и далеких является существенным, чтобы дифференцировать эти две модели. Мы показываем результаты для всех выборок в Таблице 1 Мы показываем злесь нисло				
Figure 2 . The predicted observed SB for the LCDM model with galaxy size evolution plotted against redshift. For the ENE model the prediction is a horizontal line, as SB is predicted to be constant. Note that at z>1.5, LCDM also predicts a nearly constant observed SB, so a comparison of galaxies at high and low z is essential to differentiate the two models. We show the results for all samples in Table 1. We show here the number of unresolved galaxies total galaxies median	Рис.2. Предсказанная наблюдаемая SB для модели LCDM с эволюцией размера галактик нарисована в зависимости от красного смещения. Для модели ENE будет горизонтальная линия, поскольку SB предсказана постоянной. Заметьте, что при z>1.5, LCDM также предсказывает, почти константу наблюдаемой SB, таким образом сравнение галактик близких и далеких является существенным, чтобы дифференцировать эти две модели. Мы показываем результаты для всех выборок в Таблице 1. Мы показываем здесь число неразрешенных галактик, всех галактик				
Figure 2 . The predicted observed SB for the LCDM model with galaxy size evolution plotted against redshift. For the ENE model the prediction is a horizontal line, as SB is predicted to be constant. Note that at z>1.5, LCDM also predicts a nearly constant observed SB, so a comparison of galaxies at high and low z is essential to differentiate the two models. We show the results for all samples in Table 1. We show here the number of unresolved galaxies, total galaxies, median SB the predicted SB from the best fit of	Рис.2. Предсказанная наблюдаемая SB для модели LCDM с эволюцией размера галактик нарисована в зависимости от красного смещения. Для модели ENE будет горизонтальная линия, поскольку SB предсказана постоянной. Заметьте, что при z>1.5, LCDM также предсказывает, почти константу наблюдаемой SB, таким образом сравнение галактик близких и далеких является существенным, чтобы дифференцировать эти две модели. Мы показываем результаты для всех выборок в Таблице 1. Мы показываем здесь число неразрешенных галактик, всех галактик, мелиану SB, предсказаниая SB по метолу				
Figure 2 . The predicted observed SB for the LCDM model with galaxy size evolution plotted against redshift. For the ENE model the prediction is a horizontal line, as SB is predicted to be constant. Note that at z>1.5, LCDM also predicts a nearly constant observed SB, so a comparison of galaxies at high and low z is essential to differentiate the two models. We show the results for all samples in Table 1. We show here the number of unresolved galaxies, total galaxies, median SB, the predicted SB from the best fit of the LCDM model observed minus.	Рис.2. Предсказанная наблюдаемая SB для модели LCDM с эволюцией размера галактик нарисована в зависимости от красного смещения. Для модели ENE будет горизонтальная линия, поскольку SB предсказана постоянной. Заметьте, что при z>1.5, LCDM также предсказывает, почти константу наблюдаемой SB, таким образом сравнение галактик близких и далеких является существенным, чтобы дифференцировать эти две модели. Мы показываем результаты для всех выборок в Таблице 1. Мы показываем здесь число неразрешенных галактик, всех галактик, медиану SB, предсказанная SB по методу наилуншего приблизуения молети LCDM				
Figure 2 . The predicted observed SB for the LCDM model with galaxy size evolution plotted against redshift. For the ENE model the prediction is a horizontal line, as SB is predicted to be constant. Note that at $z>1.5$, LCDM also predicts a nearly constant observed SB, so a comparison of galaxies at high and low z is essential to differentiate the two models. We show the results for all samples in Table 1. We show here the number of unresolved galaxies, total galaxies, median SB, the predicted SB from the best fit of the LCDM model, observed minus predicted values and the x^2 using a α of	Рис.2. Предсказанная наблюдаемая SB для модели LCDM с эволюцией размера галактик нарисована в зависимости от красного смещения. Для модели ENE будет горизонтальная линия, поскольку SB предсказана постоянной. Заметьте, что при z>1.5, LCDM также предсказывает, почти константу наблюдаемой SB, таким образом сравнение галактик близких и далеких является существенным, чтобы дифференцировать эти две модели. Мы показываем результаты для всех выборок в Таблице 1. Мы показываем здесь число неразрешенных галактик, всех галактик, медиану SB, предсказанная SB по методу наилучшего приближения модели LCDM, разность наблюдаемых и предсказании х				
Figure 2 . The predicted observed SB for the LCDM model with galaxy size evolution plotted against redshift. For the ENE model the prediction is a horizontal line, as SB is predicted to be constant. Note that at $z>1.5$, LCDM also predicts a nearly constant observed SB, so a comparison of galaxies at high and low z is essential to differentiate the two models. We show the results for all samples in Table 1. We show here the number of unresolved galaxies, total galaxies, median SB, the predicted SB from the best fit of the LCDM model, observed minus predicted values and the χ^2 , using a σ of 1.27 mag. derived from the number of samples.	 Рис.2. Предсказанная наблюдаемая SB для модели LCDM с эволюцией размера галактик нарисована в зависимости от красного смещения. Для модели ENE будет горизонтальная линия, поскольку SB предсказана постоянной. Заметьте, что при z>1.5, LCDM также предсказывает, почти константу наблюдаемой SB, таким образом сравнение галактик близких и далеких является существенным, чтобы дифференцировать эти две модели. Мы показываем результаты для всех выборок в Таблице 1. Мы показываем здесь число неразрешенных галактик, всех галактик, медиану SB, предсказанная SB по методу наилучшего приближения модели LCDM, разность наблюдаемых и предсказанных значений и χ² используя σ= 1.27 mag 				
Figure 2 . The predicted observed SB for the LCDM model with galaxy size evolution plotted against redshift. For the ENE model the prediction is a horizontal line, as SB is predicted to be constant. Note that at $z>1.5$, LCDM also predicts a nearly constant observed SB, so a comparison of galaxies at high and low z is essential to differentiate the two models. We show the results for all samples in Table 1. We show here the number of unresolved galaxies, total galaxies, median SB, the predicted SB from the best fit of the LCDM model, observed minus predicted values and the χ^2 , using a σ of 1.27 mag, derived from the nuv-B sample. The fit assumes that the EUV and NUV	Рис.2. Предсказанная наблюдаемая SB для модели LCDM с эволюцией размера галактик нарисована в зависимости от красного смещения. Для модели ENE будет горизонтальная линия, поскольку SB предсказана постоянной. Заметьте, что при z>1.5, LCDM также предсказывает, почти константу наблюдаемой SB, таким образом сравнение галактик близких и далеких является существенным, чтобы дифференцировать эти две модели. Мы показываем результаты для всех выборок в Таблице 1. Мы показываем здесь число неразрешенных галактик, всех галактик, медиану SB, предсказанная SB по методу наилучшего приближения модели LCDM, разность наблюдаемых и предсказанных значений и χ ² , используя σ= 1.27 mag,				
Figure 2 . The predicted observed SB for the LCDM model with galaxy size evolution plotted against redshift. For the ENE model the prediction is a horizontal line, as SB is predicted to be constant. Note that at $z>1.5$, LCDM also predicts a nearly constant observed SB, so a comparison of galaxies at high and low z is essential to differentiate the two models. We show the results for all samples in Table 1. We show here the number of unresolved galaxies, total galaxies, median SB, the predicted SB from the best fit of the LCDM model, observed minus predicted values and the χ^2 , using a σ of 1.27 mag, derived from the nuv-B sample. The fit assumes that the FUV and NUV	 Рис.2. Предсказанная наблюдаемая SB для модели LCDM с эволюцией размера галактик нарисована в зависимости от красного смещения. Для модели ENE будет горизонтальная линия, поскольку SB предсказана постоянной. Заметьте, что при z>1.5, LCDM также предсказывает, почти константу наблюдаемой SB, таким образом сравнение галактик близких и далеких является существенным, чтобы дифференцировать эти две модели. Мы показываем результаты для всех выборок в Таблице 1. Мы показываем здесь число неразрешенных галактик, всех галактик, медиану SB, предсказанная SB по методу наилучшего приближения модели LCDM, разность наблюдаемых и предсказанных значений и χ², используя σ= 1.27 mag, выведенной из выборки nuv-B. Подгонка предсказанной SB. 				
Figure 2 . The predicted observed SB for the LCDM model with galaxy size evolution plotted against redshift. For the ENE model the prediction is a horizontal line, as SB is predicted to be constant. Note that at $z>1.5$, LCDM also predicts a nearly constant observed SB, so a comparison of galaxies at high and low z is essential to differentiate the two models. We show the results for all samples in Table 1. We show here the number of unresolved galaxies, total galaxies, median SB, the predicted SB from the best fit of the LCDM model, observed minus predicted values and the χ^2 , using a σ of 1.27 mag, derived from the nuv-B sample. The fit assumes that the FUV and NUV SB are the same at a given z, but fits with different EUV and NUV values are bittle.	 Рис.2. Предсказанная наблюдаемая SB для модели LCDM с эволюцией размера галактик нарисована в зависимости от красного смещения. Для модели ENE будет горизонтальная линия, поскольку SB предсказана постоянной. Заметьте, что при z>1.5, LCDM также предсказывает, почти константу наблюдаемой SB, таким образом сравнение галактик близких и далеких является существенным, чтобы дифференцировать эти две модели. Мы показываем результаты для всех выборок в Таблице 1. Мы показываем здесь число неразрешенных галактик, всех галактик, медиану SB, предсказанная SB по методу наилучшего приближения модели LCDM, разность наблюдаемых и предсказанных значений и χ², используя σ= 1.27 mag, выведенной из выборки nuv-B. Подгонка предполагает, что FUV и NUV SB - одинаковые в лашом z, но приближения о резониции 				
Figure 2 . The predicted observed SB for the LCDM model with galaxy size evolution plotted against redshift. For the ENE model the prediction is a horizontal line, as SB is predicted to be constant. Note that at $z>1.5$, LCDM also predicts a nearly constant observed SB, so a comparison of galaxies at high and low z is essential to differentiate the two models. We show the results for all samples in Table 1. We show here the number of unresolved galaxies, total galaxies, median SB, the predicted SB from the best fit of the LCDM model, observed minus predicted values and the χ^2 , using a σ of 1.27 mag, derived from the nuv-B sample. The fit assumes that the FUV and NUV SB are the same at a given z, but fits with different FUV and NUV values are little different.	 Рис.2. Предсказанная наблюдаемая SB для модели LCDM с эволюцией размера галактик нарисована в зависимости от красного смещения. Для модели ENE будет горизонтальная линия, поскольку SB предсказана постоянной. Заметьте, что при z>1.5, LCDM также предсказывает, почти константу наблюдаемой SB, таким образом сравнение галактик близких и далеких является существенным, чтобы дифференцировать эти две модели. Мы показываем результаты для всех выборок в Таблице 1. Мы показываем здесь число неразрешенных галактик, всех галактик, медиану SB, предсказанная SB по методу наилучшего приближения модели LCDM, разность наблюдаемых и предсказанных значений и χ², используя σ= 1.27 mag, выведенной из выборки nuv-B. Подгонка предполагает, что FUV и NUV SB - одинаковые в данном z, но приближения с различными значения и EUV и NUV SB - одинаковые 				
Figure 2 . The predicted observed SB for the LCDM model with galaxy size evolution plotted against redshift. For the ENE model the prediction is a horizontal line, as SB is predicted to be constant. Note that at $z>1.5$, LCDM also predicts a nearly constant observed SB, so a comparison of galaxies at high and low z is essential to differentiate the two models. We show the results for all samples in Table 1. We show here the number of unresolved galaxies, total galaxies, median SB, the predicted SB from the best fit of the LCDM model, observed minus predicted values and the χ^2 , using a σ of 1.27 mag, derived from the nuv-B sample. The fit assumes that the FUV and NUV SB are the same at a given z, but fits with different FUV and NUV values are little different.	 Рис.2. Предсказанная наблюдаемая SB для модели LCDM с эволюцией размера галактик нарисована в зависимости от красного смещения. Для модели ENE будет горизонтальная линия, поскольку SB предсказана постоянной. Заметьте, что при z>1.5, LCDM также предсказывает, почти константу наблюдаемой SB, таким образом сравнение галактик близких и далеких является существенным, чтобы дифференцировать эти две модели. Мы показываем результаты для всех выборок в Таблице 1. Мы показываем здесь число неразрешенных галактик, всех галактик, медиану SB, предсказанная SB по методу наилучшего приближения модели LCDM, разность наблюдаемых и предсказанных значений и χ², используя σ= 1.27 mag, выведенной из выборки nuv-B. Подгонка предполагает, что FUV и NUV SB - одинаковые в данном z, но приближения с различными значениями FUV и NUV немного отличаются. 				
Figure 2 . The predicted observed SB for the LCDM model with galaxy size evolution plotted against redshift. For the ENE model the prediction is a horizontal line, as SB is predicted to be constant. Note that at $z>1.5$, LCDM also predicts a nearly constant observed SB, so a comparison of galaxies at high and low z is essential to differentiate the two models. We show the results for all samples in Table 1. We show here the number of unresolved galaxies, total galaxies, median SB, the predicted SB from the best fit of the LCDM model, observed minus predicted values and the χ^2 , using a σ of 1.27 mag, derived from the nuv-B sample. The fit assumes that the FUV and NUV SB are the same at a given z, but fits with different FUV and NUV values are little different. As can be seen from the χ^2 , the LCDM	 Рис.2. Предсказанная наблюдаемая SB для модели LCDM с эволюцией размера галактик нарисована в зависимости от красного смещения. Для модели ENE будет горизонтальная линия, поскольку SB предсказана постоянной. Заметьте, что при z>1.5, LCDM также предсказывает, почти константу наблюдаемой SB, таким образом сравнение галактик близких и далеких является существенным, чтобы дифференцировать эти две модели. Мы показываем результаты для всех выборок в Таблице 1. Мы показываем здесь число неразрешенных галактик, всех галактик, медиану SB, предсказанная SB по методу наилучшего приближения модели LCDM, разность наблюдаемых и предсказанных значений и χ², используя σ= 1.27 mag, выведенной из выборки пиv-B. Подгонка предполагает, что FUV и NUV SB - одинаковые в данном z, но приближения с различными значениями FUV и NUV немного отличаются. Как может быть замечено по χ², модель LCDM - 				

with a formal probability of 10^{-18} or 9 sigma. This is clearly the result of the difference between the GALEX points and the HUDF points, as is clearly shown in Figure 3, which plots the difference between observations and the LCDM fit against z. Relative to the LCDM predictions, the points at low z are about 1.2 magnitudes/arsec ² too dim or, to put it another way, the galaxies are 1.7 times too large, as compared with the high-z samples. If only the HUDF points are fit, the χ^2 drops to only 6.88, clearly a good fit, and the predicted low-z SB is 23.32 magnitudes/arsec ² .	формал очевиди GALEX которон наблюд зависим LCDM, 1.2 тад выража больши выборк только очевиди SB для наблюд	нонол но, р и ра и ра иост точ иост точ источ ими точн но - мал цаем	й верс	рятн тат , как ены под . От и ма иши раз ьши DF, гал DF, тал , гал , гал , гал , сал , сал , сал , сал , сал , сак	остью разли х ясно разно гонко носит лых z хом ту лактин а, по с ми z. χ^2 спа подгол т 23.3 ag/ars	• 10 ⁻¹⁸ ил чия меж, показан сти меж, й LCDM ельно пр сприблиз скнее, и ки являю сравнени Если по, адает тол нка, но п 2 mag/ars ec ² .	и 9 сигм ду точка о на Рис ду в ведсказав зительно ли, отся слиш ю с цгонять ыко до 6 предсказа sec ² , вме	. Это, ми .3, на ний на шком .88, анная сто
Table 1 Comparison of LCDM model with observation.	Таблиі наблюд	ца 1 (ени	Сравн ем.	нени	е мод	ели LCD	OM c	
	sample	Z	Ν	Ν	Med	pred	diff	χ2
			unres	tot	SB			
	fuv 0.04	0.04	6	36	24.46	23.72007	0.739928	12.31
	fuv 0.1	2.03	15	30 30	24.55	23.05721	0.892791	18.95
	fuv-D	2.05	3	59 54	19.96	20.41219	-0.45219	69
	fuv-i	4.34	3	26	19.35	19.59413	-0.24413	0.96
	fuv-z	5.18	6	21	18.94	19.1241	-0.1841	0.44
	nuv 0.1	0.1	15	75	24.53	23.65721	0.872791	35.7
	nuv-B	1.05	1	23	22.31	22.46881	-0.15881	0.36
	nuv-V	1.83	1	26	21.19	21.57241	-0.38241	2.37
	nuv-i	2.77	3	52	20	20.69836	-0.69836	15.85
	nuv-z	3.32	2	41	19.91	20.27009	-0.36009	3.32
	0	8	•	•				
	1							
	3			-1		-T	1	r-
	0	1		2		3	4	5
Figure. 3 Summary of surface brightness comparison with LCDM model. The difference between observed SB and best LCDM fit in magnitudes/arsec ² is plotted against redshift z.	Рис.3. И модельн лучшим нарисов	Ітогс о LC при ана і	овое ср DM. Р ближе в завис	авне азно нием симо	ение по ость ме м LCD ости от	оверхнос ежду набл М в mag/ красного	тной ярко июдаемой arsec ² , о смещени	ости с i SB и ия z.
This prediction was derived using eq. 6	Этот пт	огн	03 бы	п вы	велен	. исполь	зvя vn 6	
based on $1/H(z)$ size evolution for fixed	OCHORA	ном	и на эт	зопи	опии 1	$\frac{1}{H(z)}$ na	змера л	я
virial velocity However substituting a H	фиксир	OBar	ной с	KON	ости в	ириала	Олнако	
$\frac{2}{3}(z)$ size evolution for fixed mass or	Полразу	ЛИСР	аемаа	H ⁻²	^{/3} (7) וב	приши. ВОПЮНИЯ	nasmena	лпя
anything in between these two formulas	подразу фиксир	0001	истал	1900	עניען עדעון	ито_пиб	o pusmopa	, дли
would make the predicted size evolution	фиксированной массы или что-либо							
mollar and therefore would we late the	промежуточное между этими формулами							
smaner and therefore would make still	сделали оы предсказанную эволюцию размера							
worse the disagreement between	меньше	ИИ	поэто	му с	сделан	от еще х	уже	

prediction and data.	несоответствие между предсказание	МИ		
Comparison of observations with ENE	данными. Сравнение наблюдений с моделью Е	NE		
model				
We next compare the data with the ENE	Мы затем сравниваем данные с моде	елью ENE.		
model. Table 2 summarizes the	Таблица 2 подводит итог сравнения	выборок и		
comparison samples and the measurement	измерения их медианной поверхнос	гной		
of their median surface brightness. Here,	яркости. Здесь, сравнение более просто,			
the comparison is simpler, since the ENE	поскольку ENE предсказывает постоянную SB.			
prediction is a constant SB. The columns	Столбцы дают неразрешенные галактики,			
give unresolved galaxies, total number of	общее количество галактик, наблюд	аемую		
galaxies, median observed SB, and the γ^2 .	медиану SB, и γ^2 , определенном на основе			
determined based on the best fit to a	метоле наилучшего приближения к	постоянной		
constant SB which is 24 75 Figure 4 plots	SB которая является 24 75 Рис 4 по	казывает		
observed median SB against z	наблюдаемую медиану SB в зависим	IOCTH OT Z		
For the data as a whole, the ENE model is				
a significantly better fit than the LCDM	$\Delta \mu$ и даппыл в целом, модель ENE - з			
a significantly officer in than the LCDW to that	OTHOMOUND x^2 THE LODM x^2 THE LODM	NE 1 95 mm		
for ENE is 4.95 , which for 10 degrees of	отношение у для LCDW, к у для Е	INE 4.03, 410		
freedom in each act has a formal	для то степеней своюоды в каждом м	иножестве		
mehability of avisting here 1 (10)	имеет формальную вероятность слу	чаиного		
probability of existing by chance of 1%.	существования 1%. Однако, для дан	ных в		
However, for the data as a whole, the ENE	целом, модель ENE - также не прием 2^2 22 со	илемая		
model is also not an acceptable fit, since	подгонка, поскольку у $\chi^2 = 22.60$ так	же есть		
the χ^2 of 22.60 also has only a 1% chance	только 1%-ый шанс соответствовать			
of resulting from a constant SB. The	постоянной SB. Неприемлемость это	ой подгонки		
unacceptability of the fit is entirely due to	получена полностью из-за двух сами	ых дальних		
the two highest-z points. For the z range	точек. Для диапазона z от 0.03 до 3.5	$5 \chi^2 12.84$		
from 0.03 to 3.5 the χ^2 of 12.84 is an	является приемлемой подгонкой для	в 8 степеней		
acceptable fit for 8 degrees of freedom.	свободы.			
Table 2. Comparison of ENE model with	Таблица 2. Сравнение модели ENE	c		
SB observations	наблюдениями SB			
	Sample z N unres N total med SI	$3 \chi^2$		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.708750		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.597000		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.842750		
	fuv-i 4.34 3 67 25.12	5.427000		
	fuv-z 5.18 6 17 25.25	2.551062		
	uv 0.1 0.10 15 85 24.89	0.897812		
	nuv-B 1.05 1 28 24.48	1.372000		
	<u>nuv-V</u> 1.83 1 37 24.51	1.445313		
	<u>nuv-i</u> 2.77 3 83 24.50	3.506750		
	<u>nuv-z</u> 3.32 2 70 24.87	0.529375		
	26			
	25			
	29 N	104		
	24	I		
	t e a a t			
	0 1 2 3 4	5		
Figure 4 Observed median SB against	Рис.4. Наблюдаемая медиана SB в зави	симости от		
redshift. The ENE model predicts a constant	красного смещения. Модель ENE предс	казывает		

(D)	CD			
	постоянную SB.			
It is also important to note that, using the	I акже важно заметить что, используя анализ			
ENE analysis, there is a statistically	Е́МЕ, е́сть статистически существенная разница			
significant difference between the SB of	между SB высорок GALEX при z=0.1 и при			
the GALEX samples at $z=0.1$ and that at	z=0.04. Деиствительно, разность между			
z=0.04. Indeed, the difference between the	выоорками с малыми и оольшими z из GALEX -			
low and high z samples from GALEX is	почти такая же, как разность между большей			
almost the same as the difference between	частью выоорок HUDF и двумя точками на			
the bulk of the HUDF samples and the two	оольших z. Поскольку и в случаях z=0.1 и в z=4-			
high-z points. Since in both the cases of	5 медианный радиус выборки относительно			
z=0.1 and $z=4-5$ the median radius of the	олизок к разрешению телескопа (меньше чем			
sample is relatively close to the resolution	коэффициент 2 для большего), в то время как во			
of the telescope (less than a factor of 2	всех других случаях есть больший промежуток			
bigger) while in all the other cases, there is	между медианным и наименьшим			
a greater gap between the median and	наблюдаемым радиусом, мы подозревали, что			
smallest observable radius, we suspected	0.5 mag разности могли быть из-за переоценки			
that the 0.5 magnitude difference could be	радиусов галактик с относительно небольшими			
due to overestimation of the radii of	размерами изображения. Это могло быть из-за,			
galaxies with relatively small image sizes.	например, включения в выборках небольшого			
This could be due to, for example, the	размера изображения галактик, которые			
inclusion in the small-image-size samples	являются фактически кратными и которые были			
of galaxies that are actually multiple and	бы решены и исключены из выборки, если бы			
which would be resolved and excluded	изображения были большими относительно			
from the sample if the images were larger	разрешения или пиксельного размера. Мы пока			
relative to the resolution or the pixel size.	еще не способны подтвердить эту гипотезу.			
We have not been able to confirm this				
hypothesis as yet.				
However, if all the low-resolution points	Однако, если все точки низкого разрешения			
are removed (those with a small gap	удалить (тех с небольшим промежутком между			
between the telescope resolution and the	разрешением телескопа и наблюдаемым			
median observed radius) there is a	медианным радиусом), то есть замечательное			
remarkable constancy of SB, with a χ^2 of	постоянство SB, с $\chi^2 = 4.39$ для 6 степеней			
4.39 for 6 degrees of freedom.	свободы.			
4. Conclusions and open questions	4. Заключения и нерешенные вопросы			
The facts that the predictions of the	Факты, что прогнозы модели LCDM пока			
LCDM model are so far from fitting the	далеки от соответствия данным и что модель			
data and that the ENE model is much	ENE намного ближе к данным, вовсе не			
closer to the data are not at all the results	являются теми результатами, которые можно			
that one would expect from the	было бы ожидать от широко распространенного			
widespread acceptance of the LCDM	принятия модели LCDM. Результаты указывают			
model. The results point in the same	в том же самом направлении, как и более			
direction as the earlier result of Lerner,	ранний результат Лернера, который должен			
which is to pose a severe challenge, at the	поставить серьезную проблему, по крайней			
least, to the LCDM model and, in fact to	мере, к модели LCDM и, фактически к любой			
any model that explains the Hubble	модели, которая объясняет соотношение Хаббла			
relation from the expansion of the universe	расширением Вселенной, и указывает на			
and points to the possible viability of the	возможную жизненность модели ENE. Однако,			
ENE model. However, this conclusion	это заключение должно рассматриваться, как			
must be seen as preliminary and tentative,	предварительное и пробное, и нужно, конечно,			
and some open questions must certainly be	ответить на некоторые нерешенные вопросы			
answered before definitive conclusion	перед категорическим выводом, который может			
scan be drawn on the Tolman test of the	следовать после теста Толмена для этих двух			

two models.	моделей.
In the case of the LCDM model, the	В случае модели LCDM невозможность
failure to fit the data is due entirely to the	подгонки данных появляется полностью из-за
difference between the GALEX and	разности между измерениями SB в GALEX и
HUDF SB measurements. Since there is	HUDF. Поскольку нет никаких данных в
no data in the data sets we have used	наборах данных, которые мы использовали
between z=0.1 and z=0.9, it is reasonable	между z=0.1 и z=0.9, то резонно спросить: что
to ask : what happens in this gap? If there	происходит в этом промежутке? Если есть
are datasets that cover all or most of this	наборы данных, которые покрывают все или
redshift region, in which the predictions of	большую часть этой области красного
the two models are widely divergent, this	смещения, в которой предсказания этих двух
could be an additional convincing test of	моделей сильно расходятся, это могло бы быть
the LCDM model.	дополнительным убедительным испытанием
	модели LCDM.
In fact the GEMS data set could provide	Фактически набор данных GEMS мог бы
such an additional test. The GEMS data	снабдить такое дополнительное испытание.
set covers a region 75 times large in area	Набор данных GEMS покрывает область, в 75
than HUDF, so it allows significant	раз большую по площади, чем HUDF, таким
sample sizes for very bright galaxies at	образом, это позволяет иметь существенные
much lower redshift than HUDF. Two	объемы выборки для очень ярких галактик в
images were taken, one in the z -band and	намного меньшем красном смещении чем
the other in the V-band. It should be	HUDF. Два изображения были взяты, один в z -
possible to use these images to compare	диапазоне и другой - в V-диапазоне. Должно
the SB in the rest-frame B-band at z=0.9	быть возможным использовать эти
with that at z=0.4, thus filling in most of	изображения, чтобы сравнить SB в
the gap between HUDF and GALEX.	неподвижной системе отсчета в В-диапазоне
(Lopez-Corriodora has used this same data	при z=0.9 с таким же при z=0.4, таким образом,
set for a test of the angular-radius-redshift	заполняя в большей части промежуток между
realtionship). We intend to do this.	HUDF и GALEX. (Лопес-Корриодора
	использовал этот же набор данных для
	проверки связи углового радиуса и красного
	смещения). Мы намереваемся проделать это.
Second, for the ENE model, there remains	Во-вторых, для модели ENE, там остается
the question of whether the small images	вопросом, правильно ли считать небольшие
are mismeasured, a result which would	изображения неизмеряемыми, результат,
also have some effect on the LCDM	который также имел бы некоторый эффект на
analysis. A more through analysis of the	анализ LCDM. В большей степени через анализ
change in SB with z in the GALEX	изменения в SB с z в GALEX выборках должен
sample should shed light on this question,	пролиться свет на этот вопрос, и он будет
and will be pursued in the future.	расследоваться в будущем.
Acknowledgement. The author wishes to	Благодарность. Автор желает поблагодарить
acknowledge the large contributions to the	Ренато Фаломо и Риккардо Скарпа за большой
analysis of this data of Renato Falomo and	вклад в анализ этих данных.
Riccardo Scarpa.	
REFERENCES	Литература
	Astier P. 2006 A&A 447, 31
	Coe, D., et al 2006 AJ 132 926-959
	Cohen, A.C., 1961, Technometrics, 3, 535-541
	Hathi, N. P., Malhotra, S.,& Rhoads, J. E. 2008,
	ApJ, 673, 686-693
	Lerner, E.J., 2006, in 1st Crisis in Cosmology
	Conference, CCC-1, AIP conference proc. 822,

60
Lopez-Corredoira,2008
Lubin L.M., and Sandage A. 2001, AJ 122, 1084
Mo, H.J., Mao, S. and White, S.D.M, 1998,
MNRAS, 295,319
Pahre, M. A., Djorgovski, S.G., and de Carvalho,
R. R. 1996, ApJ 456,L79
Scarpa, R, Falamo R. and Lerner, E., 2009, in preparation
Tolman, R.C., 1930, Proc. N.A.S. 16, 511
Weedman D. W., Wolovitz J. B., Bershady M. A.,
and Schneider D. P. 1998, ApJ 116, 1643